Functional organization of the pallid bat auditory cortex: emphasis on binaural organization.

نویسندگان

  • Khaleel A Razak
  • Zoltan M Fuzessery
چکیده

This report maps the organization of the primary auditory cortex of the pallid bat in terms of frequency tuning, selectivity for behaviorally relevant sounds, and interaural intensity difference (IID) sensitivity. The pallid bat is unusual in that it localizes terrestrial prey by passively listening to prey-generated noise transients (1-20 kHz), while reserving high-frequency (<30 kHz) echolocation for obstacle avoidance. The functional organization of its auditory cortex reflects the need for specializations in echolocation and passive sound localization. Best frequencies were arranged tonotopically with a general increase in the caudolateral to rostromedial direction. Frequencies between 24 and 32 kHz were under-represented, resulting in hypertrophy of frequencies relevant for prey localization and echolocation. Most neurons (83%) tuned <30 kHz responded preferentially to broadband or band-pass noise over single tones. Most neurons (62%) tuned >30 kHz responded selectively or exclusively to the 60- to 30-kHz downward frequency-modulated (FM) sweep used for echolocation. Within the low-frequency region, neurons were placed in two groups that occurred in two separate clusters: those selective for low- or high-frequency band-pass noise and suppressed by broadband noise, and neurons that showed no preference for band-pass noise over broadband noise. Neurons were organized in homogeneous clusters with respect to their binaural response properties. The distribution of binaural properties differed in the noise- and FM sweep-preferring regions, suggesting task-dependent differences in binaural processing. The low-frequency region was dominated by a large cluster of binaurally inhibited neurons with a smaller cluster of neurons with mixed binaural interactions. The FM sweep-selective region was dominated by neurons with mixed binaural interactions or monaural neurons. Finally, this report describes a cortical substrate for systematic representation of a spatial cue, IIDs, in the low-frequency region. This substrate may underlie a population code for sound localization based on a systematic shift in the distribution of activity across the cortex with sound source location.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of functional organization of the pallid bat auditory cortex.

The primary auditory cortex is characterized by a tonotopic map and a clustered organization of binaural properties. The factors involved in the development of overlain representation of these two properties are unclear. We addressed this issue in the auditory cortex of the pallid bat. The adult pallid bat cortex contains a systematic relationship between best frequency (BF) and binaural proper...

متن کامل

GABA shapes a systematic map of binaural sensitivity in the auditory cortex.

A consistent organizational feature of auditory cortex is a clustered representation of binaural properties. Here we address two questions. What is the intrinsic organization of binaural clusters and to what extent does intracortical processing contribute to binaural representation. We address these issues in the auditory cortex of the pallid bat. The pallid bat listens to prey-generated noise ...

متن کامل

A systematic representation of interaural intensity differences in the auditory cortex of the pallid bat.

The current model of cortical processing of auditory spatial information is based on an orthogonal representation of frequency and binaural response properties, but how this arrangement leads to representation of space in the auditory cortex is unclear. This study describes the first evidence of a cortical substrate for the systematic representation of space in a region of primary auditory cort...

متن کامل

Systematic representation of sound locations in the primary auditory cortex.

The primary auditory cortex (A1) is involved in sound localization. A consistent observation in A1 is a clustered representation of binaural properties, but how spatial tuning varies within binaural clusters is unknown. Here, this issue was addressed in A1 of the pallid bat, a species that relies on passive hearing (as opposed to echolocation) to localize prey. Evidence is presented for systema...

متن کامل

Parallel thalamocortical pathways for echolocation and passive sound localization in a gleaning bat, Antrozous pallidus.

We present evidence for parallel auditory thalamocortical pathways that serve two different behaviors. The pallid bat listens for prey-generated noise (5-35 kHz) to localize prey, while reserving echolocation [downward frequency-modulated (FM) sweeps, 60-30 kHz] for obstacle avoidance. Its auditory cortex contains a tonotopic map representing frequencies from 6 to 70 kHz. The high-frequency (BF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 87 1  شماره 

صفحات  -

تاریخ انتشار 2002